脑电图(EEG)是一种了解大脑如何处理语音的有力方法。为此目的,已通过深层神经网络替换了线性模型,并产生令人鼓舞的结果。在相关的脑电图分类字段中,表明明确建模主题不变特征可改善模型跨主题和福利分类精度的概括。在这项工作中,我们适应分解的分层变分自动编码器来利用同一刺激的平行脑电图记录。我们将脑电图模拟为两个分离的潜在空间。受试者的准确性分别在受试者和内容潜在空间上分别达到98.96%和1.60%,而二进制内容分类实验的精度分别达到了51.51%和62.91%的准确性,对受试者和内容潜在空间的准确性分别为51.51%和62.91%。
translated by 谷歌翻译
Based on administrative data of unemployed in Belgium, we estimate the labour market effects of three training programmes at various aggregation levels using Modified Causal Forests, a causal machine learning estimator. While all programmes have positive effects after the lock-in period, we find substantial heterogeneity across programmes and unemployed. Simulations show that 'black-box' rules that reassign unemployed to programmes that maximise estimated individual gains can considerably improve effectiveness: up to 20 percent more (less) time spent in (un)employment within a 30 months window. A shallow policy tree delivers a simple rule that realizes about 70 percent of this gain.
translated by 谷歌翻译
We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances, and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show that that the return-risk model can also account for risk from uncertain transition kernel when one only seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm through numerical experiments.
translated by 谷歌翻译
Creating compelling captions for data visualizations has been a longstanding challenge. Visualization researchers are typically untrained in journalistic reporting and hence the captions that are placed below data visualizations tend to be not overly engaging and rather just stick to basic observations about the data. In this work we explore the opportunities offered by the newly emerging crop of large language models (LLM) which use sophisticated deep learning technology to produce human-like prose. We ask, can these powerful software devices be purposed to produce engaging captions for generic data visualizations like a scatterplot. It turns out that the key challenge lies in designing the most effective prompt for the LLM, a task called prompt engineering. We report on first experiments using the popular LLM GPT-3 and deliver some promising results.
translated by 谷歌翻译
In 2019 Kerdels and Peters proposed a grid cell model (GCM) based on a Differential Growing Neural Gas (DGNG) network architecture as a computationally efficient way to model an Autoassociative Memory Cell (AMC) \cite{Kerdels_Peters_2019}. An important feature of the DGNG architecture with respect to possible applications in the field of computational neuroscience is its \textit{capacity} refering to its capability to process and uniquely distinguish input signals and therefore obtain a valid representation of the input space. This study evaluates the capacity of a two layered DGNG grid cell model on the Fashion-MNIST dataset. The focus on the study lies on the variation of layer sizes to improve the understanding of capacity properties in relation to network parameters as well as its scaling properties. Additionally, parameter discussions and a plausability check with a pixel/segment variation method are provided. It is concluded, that the DGNG model is able to obtain a meaningful and plausible representation of the input space and to cope with the complexity of the Fashion-MNIST dataset even at moderate layer sizes.
translated by 谷歌翻译
The devastation caused by the coronavirus pandemic makes it imperative to design automated techniques for a fast and accurate detection. We propose a novel non-invasive tool, using deep learning and imaging, for delineating COVID-19 infection in lungs. The Ensembling Attention-based Multi-scaled Convolution network (EAMC), employing Leave-One-Patient-Out (LOPO) training, exhibits high sensitivity and precision in outlining infected regions along with assessment of severity. The Attention module combines contextual with local information, at multiple scales, for accurate segmentation. Ensemble learning integrates heterogeneity of decision through different base classifiers. The superiority of EAMC, even with severe class imbalance, is established through comparison with existing state-of-the-art learning models over four publicly-available COVID-19 datasets. The results are suggestive of the relevance of deep learning in providing assistive intelligence to medical practitioners, when they are overburdened with patients as in pandemics. Its clinical significance lies in its unprecedented scope in providing low-cost decision-making for patients lacking specialized healthcare at remote locations.
translated by 谷歌翻译
In recent years multi-label, multi-class video action recognition has gained significant popularity. While reasoning over temporally connected atomic actions is mundane for intelligent species, standard artificial neural networks (ANN) still struggle to classify them. In the real world, atomic actions often temporally connect to form more complex composite actions. The challenge lies in recognising composite action of varying durations while other distinct composite or atomic actions occur in the background. Drawing upon the success of relational networks, we propose methods that learn to reason over the semantic concept of objects and actions. We empirically show how ANNs benefit from pretraining, relational inductive biases and unordered set-based latent representations. In this paper we propose deep set conditioned I3D (SCI3D), a two stream relational network that employs latent representation of state and visual representation for reasoning over events and actions. They learn to reason about temporally connected actions in order to identify all of them in the video. The proposed method achieves an improvement of around 1.49% mAP in atomic action recognition and 17.57% mAP in composite action recognition, over a I3D-NL baseline, on the CATER dataset.
translated by 谷歌翻译
Community detection in Social Networks is associated with finding and grouping the most similar nodes inherent in the network. These similar nodes are identified by computing tie strength. Stronger ties indicates higher proximity shared by connected node pairs. This work is motivated by Granovetter's argument that suggests that strong ties lies within densely connected nodes and the theory that community cores in real-world networks are densely connected. In this paper, we have introduced a novel method called \emph{Disjoint Community detection using Cascades (DCC)} which demonstrates the effectiveness of a new local density based tie strength measure on detecting communities. Here, tie strength is utilized to decide the paths followed for propagating information. The idea is to crawl through the tuple information of cascades towards the community core guided by increasing tie strength. Considering the cascade generation step, a novel preferential membership method has been developed to assign community labels to unassigned nodes. The efficacy of $DCC$ has been analyzed based on quality and accuracy on several real-world datasets and baseline community detection algorithms.
translated by 谷歌翻译
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on manifolds. Bayesian optimization algorithms build a surrogate of the objective function by employing Gaussian processes and quantify the uncertainty in that surrogate by deriving an acquisition function. This acquisition function represents the probability of improvement based on the kernel of the Gaussian process, which guides the search in the optimization process. The critical challenge for designing Bayesian optimization algorithms on manifolds lies in the difficulty of constructing valid covariance kernels for Gaussian processes on general manifolds. Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensional Euclidean space via equivariant embeddings and then constructing a valid covariance kernel on the image manifold after the embedding. This leads to efficient and scalable algorithms for optimization over complex manifolds. Simulation study and real data analysis are carried out to demonstrate the utilities of our eBO framework by applying the eBO to various optimization problems over manifolds such as the sphere, the Grassmannian, and the manifold of positive definite matrices.
translated by 谷歌翻译
Machine Learning for Source Code (ML4Code) is an active research field in which extensive experimentation is needed to discover how to best use source code's richly structured information. With this in mind, we introduce JEMMA, an Extensible Java Dataset for ML4Code Applications, which is a large-scale, diverse, and high-quality dataset targeted at ML4Code. Our goal with JEMMA is to lower the barrier to entry in ML4Code by providing the building blocks to experiment with source code models and tasks. JEMMA comes with a considerable amount of pre-processed information such as metadata, representations (e.g., code tokens, ASTs, graphs), and several properties (e.g., metrics, static analysis results) for 50,000 Java projects from the 50KC dataset, with over 1.2 million classes and over 8 million methods. JEMMA is also extensible allowing users to add new properties and representations to the dataset, and evaluate tasks on them. Thus, JEMMA becomes a workbench that researchers can use to experiment with novel representations and tasks operating on source code. To demonstrate the utility of the dataset, we also report results from two empirical studies on our data, ultimately showing that significant work lies ahead in the design of context-aware source code models that can reason over a broader network of source code entities in a software project, the very task that JEMMA is designed to help with.
translated by 谷歌翻译